702 research outputs found

    Involvement of RET oncogene in human tumours: specificity of RET activation to thyroid tumours.

    Get PDF
    Non-thyroid neoplasia were analysed by Southern blot of genomic DNA and DNA prepared by reverse transcription and amplification by polymerase chain reaction (RT/PCR) for the activation of the RET oncogene. It is known that the rearrangement of RET occurs in about 10%-20% of human thyroid papillary carcinomas. None of 528 non-thyroid tumours showed rearrangement of the RET proto-oncogene, whereas three out of 30 thyroid papillary carcinomas were positive for RET activation. Therefore the activation of RET seems to be a somatic cell mutation specific to human thyroid carcinomas

    The trpE Gene Negatively Regulates Differentiation of Heterocysts at the Level of Induction in Anabaena sp. Strain PCC 7120

    Get PDF
    Levels of 2-oxoglutarate (2-OG) reflect nitrogen status in many bacteria. In heterocystous cyanobacteria, a spike in the 2-OG level occurs shortly after the removal of combined nitrogen from cultures and is an integral part of the induction of heterocyst differentiation. In this work, deletion of one of the two annotated trpE genes in Anabaena sp. strain PCC 7120 resulted in a spike in the 2-OG level and subsequent differentiation of a wild-type pattern of heterocysts when filaments of the mutant were transferred from growth on ammonia to growth on nitrate. In contrast, 2-OG levels were unaffected in the wild type, which did not differentiate under the same conditions. An inverted-repeat sequence located upstream of trpE bound a central regulator of differentiation, HetR, in vitro and was necessary for HetR-dependent transcription of a reporter fusion and complementation of the mutant phenotype in vivo. Functional complementation of the mutant phenotype with the addition of tryptophan suggested that levels of tryptophan, rather than the demonstrated anthranilate synthase activity of TrpE, mediated the developmental response of the wild type to nitrate. A model is presented for the observed increase in 2-OG in the trpE mutant

    The heterocyst regulatory protein HetP and its homologs modulate heterocyst commitment in Anabaena sp. strain PCC 7120

    Get PDF
    The commitment of differentiating cells to a specialized fate is fundamental to the correct assembly of tissues within a multicellular organism. Because commitment is often irreversible, entry into and progression through this phase of development must be tightly regulated. Under nitrogen-limiting conditions, the multicellular cyanobacterium Anabaena sp. strain PCC 7120 terminally commits ∼10% of its cells to become specialized nitrogen-fixing heterocysts. Although commitment is known to occur 9–14 h after the induction of differentiation, the factors that regulate the initiation and duration of this phase have yet to be elucidated. Here, we report the identification of four genes that share a functional domain and modulate heterocyst commitment: hetP (alr2818), asl1930, alr2902, and alr3234. Epistatic relationships between all four genes relating to commitment were revealed by deleting them individually and in combination; asl1930 and alr3234 acted most upstream to delay commitment, alr2902 acted next in the pathway to inhibit development, and hetP acted most downstream to drive commitment forward. Possible protein–protein interactions between HetP, its homologs, and the heterocyst master regulator, HetR, were assessed, and interaction partners were defined. Finally, patterns of gene expression for each homolog, as determined by promoter fusions to gfp and reverse transcription–quantitative PCR, were distinct from that of hetP in both spatiotemporal organization and regulation. We posit that a dynamic succession of protein–protein interactions modulates the timing and efficiency of the commitment phase of development and note that this work highlights the utility of a multicellular cyanobacterium as a model for the study of developmental processes

    Clinical Potential of DNA Methylation in Gastric Cancer: A Meta-Analysis

    Get PDF
    Background: Accumulating evidence indicates aberrant DNA methylation is involved in gastric tumourigenesis, suggesting it may be a useful clinical biomarker for the disease. The aim of this study was to consolidate and summarize published data on the potential of methylation in gastric cancer (GC) risk prediction, prognostication and prediction of treatment response. Methods: Relevant studies were identified from PubMed using a systematic search approach. Results were summarized by meta-analysis. Mantel-Haenszel odds ratios were computed for each methylation event assuming the random-effects model. Results: A review of 589 retrieved publications identified 415 relevant articles, including 143 case-control studies on gene methylation of 142 individual genes in GC clinical samples. A total of 77 genes were significantly differentially methylated between tumour and normal gastric tissue from GC subjects, of which data on 62 was derived from single studies. Methylation of 15, 4 and 7 genes in normal gastric tissue, plasma and serum respectively was significantly different in frequency between GC and non-cancer subjects. A prognostic significance was reported for 18 genes and predictive significance was reported for p16 methylation, although many inconsistent findings were also observed. No bias due to assay, use of fixed tissue or CpG sites analysed was detected, however a slight bias towards publication of positive findings was observed
    corecore